Section 6.5 Analyzing Polar Graphs

ROSE CURVES	$r = acos(n\theta)$	$r = asin(n\theta)$	where n is an integer greater than 1	
1. Graph: $r = 3cos2\theta$				
How to graph a Polar Equation in the calculator.				
Change Mode to	o POL (polar) *stay i	n radian mode		
Type in equation	n for r1			
Adjust window				
$\theta min = 0, \theta max = 2\pi, \theta step = \pi/15$				
X [-4,4]				
Y[-4,4]				
* x and y values will vary depending on the given equation				
Change format (2 nd zoom) to Polar	6C		
Analyze the gra	ph:			
Domain:	Range:	Continuity:	Boundedness:	
Symmetry:		Number of Pedals:		

Graphs of Rose Curves

The graphs of $r = a \cos n\theta$ and $r = a \sin n\theta$, where n > 1 is an integer, have the following characteristics:

```
Domain: (-\infty, \infty)

Range: [-|a|, |a|]

Continuous

Symmetry: n even, symmetric about x-axis, y-axis, and the origin

n odd, r = a \cos n\theta symmetric about x-axis

n odd, r = a \sin n\theta symmetric about y-axis

Bounded

Maximum |r| value: |a|

No asymptotes

Number of petals: n, if n is odd

2n, if n is even
```

Limaçon Curves

The **limaçon curves** are graphs of polar equations of the form

 $r = a \pm b \sin \theta$ and $r = a \pm b \cos \theta$,

where a > 0 and b > 0. *Limaçon*, pronounced "LEE-ma-sohn," is Old French for "snail." There are four different shapes of limaçons, as illustrated in Figure 6.52.

2. Graph $r = 3 - 3sin\theta$ in a graphing calculator, and analyze the graph.

3. Graph $r = 2 + 3cos\theta$ in a graphing calculator, and analyze the graph.

Graphs of Limaçon Curves

The graphs of $r = a \pm b \sin \theta$ and $r = a \pm b \cos \theta$, where a > 0 and b > 0, have the following characteristics:

Domain: $(-\infty, \infty)$ Range: [a - b, a + b]Continuous Symmetry: $r = a \pm b \sin \theta$, symmetric about y-axis $r = a \pm b \cos \theta$, symmetric about x-axis Bounded Maximum |r| value: a + bNo asymptotes

Section 6.5 HW

Analyze the graph of the polar curve

29. $r = 2 \sin 3\theta$	30. $r = -3 \cos 4\theta$
31. $r = 5 + 4 \sin \theta$	32. $r = 6 - 5 \cos \theta$
33. $r = 4 + 4 \cos \theta$	34. $r = 5 - 5 \sin \theta$
35. $r = 5 + 2 \cos \theta$	36. $r = 3 - \sin \theta$
37. $r = 2 + 5 \cos \theta$	38. $r = 3 - 4 \sin \theta$
39. $r = 1 - \cos \theta$	40. $r = 2 + \sin \theta$